Classifying algorithms for SIFT-MS technology and medical diagnosis

نویسندگان

  • Katherine T. Moorhead
  • Dominic S. Lee
  • J. Geoffrey Chase
  • A. R. Moot
  • K. M. Ledingham
  • Jennifer M. Scotter
  • R. A. Allardyce
  • S. T. Senthilmohan
  • Zoltan H. Endre
چکیده

Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) is an analytical technique for real-time quantification of trace gases in air or breath samples. SIFT-MS system thus offers unique potential for early, rapid detection of disease states. Identification of volatile organic compound (VOC) masses that contribute strongly towards a successful classification clearly highlights potential new biomarkers. A method utilising kernel density estimates is thus presented for classifying unknown samples. It is validated in a simple known case and a clinical setting before-after dialysis. The simple case with nitrogen in Tedlar bags returned a 100% success rate, as expected. The clinical proof-of-concept with seven tests on one patient had an ROC curve area of 0.89. These results validate the method presented and illustrate the emerging clinical potential of this technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a combination of SIFT-MS and multivariate data analysis for the diagnosis of Mycobacterium bovis in wild badgers.

The currently accepted 'gold standard' tuberculosis (TB) detection method for veterinary applications is that of culturing from a tissue sample post mortem. The test is accurate, but growing Mycobacterium bovis is difficult and the process can take up to 12 weeks to return a diagnosis. In this paper we evaluate a much faster screening approach based on serum headspace analysis using selected io...

متن کامل

Breast Cancer Diagnosis from Perspective of Class Imbalance

Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the ...

متن کامل

Using Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder

Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...

متن کامل

Using Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder

Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2008